Home >PTM Proteomics > Protein Acetylation

Acetyl Lysine Antibody, Agarose

Catalog # Pack Size Price(USD)
ICP0388 5 mg $895.00

Quantity:

Product Description
In order to increase the efficeincy and capacity of the affinity enrichment, higher density of the acetylated lysine antibody is immobilized to beaded agarose. The product could be utilized as an affinity matrix for rapid isolation and purification of the species of proteins or peptide with acetyl lysine residues.
 
The acetylated protein Signal as determinated by ELISA titration (OD50 titer). Acetlated Proteins were eluted from 1 mL the rabbit anti-acetyllysine Agarose (ICP0388) and immobilized on microrplate followed by detection with mouse anti-Acetylated lysine HRP. Rabbitt anti-Biotin Agarose (1 mL) was utilized as negative control.

 
Formulation
0.5 mL beaded agarose suspended in 1 mL slurry
Antibody Immobilized
10 mg/mL antibody is covalently linked through amide bonds with NHS activated-SMCC then linked to thiolated agarose beads via thiol ether bonds.
Specificity
This antibody affinity matrix selectively captures the peptides and proteins with acetylated lysine residues (N-epsilon). There is no cross creation with methylated proteins or mono- and demethylated proteins.
Binding Capacity
Approximately 0.5-1 mg of acetylated histone/mL
Applications
Rapid isolation and purification of peptides or proteins with acetylated lysine residues from cell lysate or protease-digested mixtures.
Scientific Description
Protein acetylation is a form of post-translational modification known to regulate many diverse biological processes. Detection, isolation and identification of acetylated proteins/peptides is essential in proteomic studies. Affinity chromatography is one of the most efficient and rapid methods to enrich and purify the acetylated species for further MS/MS identification.
Storage & Stability
Product is stable for 30 days at room temperature. For extended storage, sote product at -20°C. Do not aliquot and shake thoroughly before use.
Product Specific References 
  1. 1.   Science. 2009. 325 (5942): 834-840. doi 10.1126/science.1175371.
  2. 2.   Cell. 2010. 140 (2): 257-267. doi: 10.1016/j.cell.2009.12.031.
  3. 3.   Mol. Cell. 2010. 39 (2): 247-258. doi: 10.1016/j.molcel.2010.07.006.
  4. 4.    Proteomics. 2010. 10 (5): 1029-1039. doi: 10.1002/pmic.200900602.
  5. 5.   Plant Physiol. 2011. 155 (4): 1779-1790. doi: 10.1104/pp.110.171595.
  6. 6.   Euro. J. Cell Biol. 2011. 90 (1-2): 128-135. doi: 10.1016/j.ejcb.2010.09.004.
  7. 7.   Mol. Cell. Proteomics. 2012. 11 (11): 1510-1522. doi: 10.1074/mcp.M112.017251.
  8. 8.   Proc. Natl. Acad. Sci. U.S.A. 2012. 109 (28): 11133-11138. doi: 10.1073/pnas.1208669109.
  9. 9.   J. Proteome Res. 2012. 11 (3): 1633-1643. doi: 10.1021/pr2008384.
  10. 10. J. Lipid Res. 2012. 53 (9): 1864-1876. doi: 10.1194/jlr.M026567.
  11. 11. Cell. 2012. 149 (1): 214-231. doi: 10.1016/j.cell.2012.02.013.
  12. 12. Cell.2012. 150 (3): 620-632.doi: 10.1016/j.cell.2012.06.027.
  13. 13. Exp. Hematol. 2012. 40 (4): 342-355. doi: 10.1016/j.exphem.2011.12.005.
  14. 14. PLoS ONE. 2012. 7 (12): e50545. doi: 10.1371/journal.pone.0050545.
  15. 15. PLoS Genet. 2012. 8 (9): e1002948. doi: 10.1371/journal.pgen.1002948.
  16. 16. Euro. J. Cell Biol. 2012. 91 (11-12): 950-960. doi: 10.1016/j.ejcb.2012.07.001.
  17. 17. J. Proteomics.2013. 79: 60-71. doi:10.1016/j.jprot.2012.12.001.
  18. 18. Biochem. Biophys. Res. Commun. 2013. 435 (3): 403-407. doi: 10.1016/j.bbrc.2013.04.101.
  19. 19. J. Biol. Chem. 2013. 288 (36): 26209-26219. doi: 10.1074/jbc.M113.483396.
  20. 20. J. Biol. Chem. 2013. 288 (40): 29036-29045. doi: 10.1074/jbc.M113.486753.
  21. 21. Mol. Microbiol. 2013. 89 (4): 660-675. doi: 10.1111/mmi.12303.
  22. 22. Proc. Natl. Acad. Sci. U.S.A. 2013. 110 (9): 3339-3344. doi: 10.1073/pnas.1217632110.
  23. 23. Mol. Cell. 2013. 51 (2): 265-272. doi: 10.1016/j.molcel.2013.06.003.
  24. 24. Mol. Cell. Biol. 2013. 33 (8): 1487-1502. doi: 10.1016/j.molcel.2013.06.003.
  25. 25. PLoS ONE. 2013. 8 (6): e64953. doi: 10.1371/journal.pone.0064953.
  26. 26. Nature Methods. 2013. 10 (7): 634-637. doi: 10.1038/NMETH.2518.
  27. 27. J. Clin. Invest. 2014. 124 (2):768-784. doi: 10.1172/JCI69413.
  28. 28. Mol. Biosyst., 2015. 11 (3): 908-922 doi: 10.1039/c4mb00490f.
  29. 29. Methods in Molecular Biology, 2015. 1295: 275-292. doi: 10.1007/978-1-4939-2550-6 21.