Home >PTM Proteomics > Protein Acetylation

Acetyl Lysine Antibody, Agarose

Catalog # Pack Size Price(USD)
ICP0388 2 mg $525.00

Quantity:

Product Description
The acetylated lysine antibody is immobilized to beaded agarose via amide linkages. The product could be utilized as an affinity matrix for rapid isolation and purification of proteins or peptides with acetyl lysine residues.
 
The acetylated peptide profile from acetyl-lysine-specific affinity chromatography (matrix=ICP0388). Approximately 5 mg of trypsinated crude protein from TSA treated MMRU cells was loaded.
Formulation
0.5 mL beaded agarose suspended in 1 mL of glycerol
Antibody Immobilized
4 mg/mL antibody is covalently linked through amide bonds with NHS activated-SMCC then linked to thiolated agarose beads via thiol ether bonds.
Specificity
The antibody selectively captures peptides and proteins with acetylated lysine residues (N-epsilon). There are no cross reactions with methylated proteins or mono- and dimethylated proteins.
Binding Capacity
Approximately 0.2 mg of acetylated histone/mL
Applications
Rapid isolation and purification of peptides or proteins with acetylated lysine residues from cell lysate or protease-digested mixtures.
Scientific Description
Protein acetylation is a form of post-translational modification known to regulate many diverse biological processes. Detection, isolation and identification of acetylated proteins/peptides is essential in proteomic studies. Affinity chromatography is one of the most efficient and rapid methods to enrich and purify the acetylated species for further MS/MS identification.
Storage & Stability
Product is stable for several weeks at 4°C. For extended storage, store product at -20°C. Expiration date is one year from date of shipping if stored properly.
Cited Publications
  1. 1.   Science. 2009. 325 (5942): 834-840. doi 10.1126/science.1175371.
  2. 2.   Cell. 2010. 140 (2): 257-267. doi: 10.1016/j.cell.2009.12.031.
  3. 3.   Mol. Cell. 2010. 39 (2): 247-258. doi: 10.1016/j.molcel.2010.07.006.
  4. 4.    Proteomics. 2010. 10 (5): 1029-1039. doi: 10.1002/pmic.200900602.
  5. 5.   Plant Physiol. 2011. 155 (4): 1779-1790. doi: 10.1104/pp.110.171595.
  6. 6.   Euro. J. Cell Biol. 2011. 90 (1-2): 128-135. doi: 10.1016/j.ejcb.2010.09.004.
  7. 7.   Mol. Cell. Proteomics. 2012. 11 (11): 1510-1522. doi: 10.1074/mcp.M112.017251.
  8. 8.   Proc. Natl. Acad. Sci. U.S.A. 2012. 109 (28): 11133-11138. doi: 10.1073/pnas.1208669109.
  9. 9.   J. Proteome Res. 2012. 11 (3): 1633-1643. doi: 10.1021/pr2008384.
  10. 10. J. Lipid Res. 2012. 53 (9): 1864-1876. doi: 10.1194/jlr.M026567.
  11. 11. Cell. 2012. 149 (1): 214-231. doi: 10.1016/j.cell.2012.02.013.
  12. 12. Cell.2012. 150 (3): 620-632.doi: 10.1016/j.cell.2012.06.027.
  13. 13. Exp. Hematol. 2012. 40 (4): 342-355. doi: 10.1016/j.exphem.2011.12.005.
  14. 14. PLoS ONE. 2012. 7 (12): e50545. doi: 10.1371/journal.pone.0050545.
  15. 15. PLoS Genet. 2012. 8 (9): e1002948. doi: 10.1371/journal.pgen.1002948.
  16. 16. Euro. J. Cell Biol. 2012. 91 (11-12): 950-960. doi: 10.1016/j.ejcb.2012.07.001.
  17. 17. J. Proteomics.2013. 79: 60-71. doi:10.1016/j.jprot.2012.12.001.
  18. 18. Biochem. Biophys. Res. Commun. 2013. 435 (3): 403-407. doi: 10.1016/j.bbrc.2013.04.101.
  19. 19. J. Biol. Chem. 2013. 288 (36): 26209-26219. doi: 10.1074/jbc.M113.483396.
  20. 20. J. Biol. Chem. 2013. 288 (40): 29036-29045. doi: 10.1074/jbc.M113.486753.
  21. 21. Mol. Microbiol. 2013. 89 (4): 660-675. doi: 10.1111/mmi.12303.
  22. 22. Proc. Natl. Acad. Sci. U.S.A. 2013. 110 (9): 3339-3344. doi: 10.1073/pnas.1217632110.
  23. 23. Mol. Cell. 2013. 51 (2): 265-272. doi: 10.1016/j.molcel.2013.06.003.
  24. 24. Mol. Cell. Biol. 2013. 33 (8): 1487-1502. doi: 10.1016/j.molcel.2013.06.003.
  25. 25. PLoS ONE. 2013. 8 (6): e64953. doi: 10.1371/journal.pone.0064953.
  26. 26. Nature Methods. 2013. 10 (7): 634-637. doi: 10.1038/NMETH.2518.
  27. 27. J. Clin. Invest. 2014. 124 (2):768-784. doi: 10.1172/JCI69413.