Home >PTM Proteomics > Protein Acetylation

Acetyl Lysine Antibody, Agarose -5mg

Catalog # Pack Size Price(USD)
ICP0388-5MG 5 mg $950.00

Quantity:

Product Description

A high density of the acetylated lysine antibody is immobilized to agarose beads. The product can be utilized as an affinity matrix for rapid isolation and purification of proteins/peptides with acetyl lysine residues.

 

 
The acetylated protein signal as determinated by ELISA titration (OD50 titer).
The acetlated proteins were eluted from 1 mL the Rabbit anti-Acetyllysine Agarose (ICP0388) and immobilized on microrplate, followed by detection with Mouse anti-Acetylated lysine HRP. Rabbitt anti-Biotin Agarose (1 mL) was utilized as the negative control.
          
The maximum binding of acetylated BSA with ICP0388-5MG. 
-50 µl of ICP0388-5MG were incubated with 1 mg of acetylate BSA in a 1 ml tube for 60 min. 
- After washing with PBST 4 times, the bound acetylated BSA was eluted with 1 ml of 0.5 M HCl 
-5 µl / lane of the eluted acetylated BSA was resolved by SDS-PAGE and blotted wih monoclonal Mouse anti-Acetylated Lysine (ICP0390) 
-ECL exposure 3 seconds
Formulation

0.5 mL of agarose beads suspended in 1 mL of slurry

 

Antibody Immobilized

10 mg/mL antibody is covalently linked through amide bonds with NHS activated-SMCC, which further conjugates to thiolated agarose beads via thiol ether bonds.

 

Specificity

This antibody affinity matrix selectively captures proteins/peptides with acetylated lysine residues (N-epsilon). No cross creation to methylated proteins/peptides.

 

Binding 
Capacity
Approximately 0.5-1 mg of acetylated histone / mL slurry.
 
Applications

Rapid isolation and purification of proteins/peptides with acetylated lysine residues from cell lysate or protease-digested mixtures.

 

Scientific Description

Protein acetylation is a form of post-translational modification known to regulate many diverse biological processes. Detection, isolation and identification of acetylated proteins/peptides is essential in proteomic studies. Affinity chromatography is one of the most efficient and rapid methods to enrich and purify the acetylated species for further MS/MS identification.

 

Storage & Stability

Product is stable for 30 days at room temperature. For extended storage, store product at -20°C. Do not aliquot and shake thoroughly before use.Expiration date is one year from date of shipping if properly stored.

 

Product Specific References 
  1. 1. Science. 2009. 325 (5942): 834-840. doi:10.1126/science.1175371.
  2. 2. Cell. 2010. 140 (2): 257-267. doi:10.1016/j.cell.2009.12.031.
  3. 3. Mol. Cell. 2010. 39 (2): 247-258. doi:10.1016/j.molcel.2010.07.006.
  4. 4. Proteomics. 2010. 10 (5): 1029-1039. doi:10.1002/pmic.200900602.
  5. 5. Plant Physiol. 2011. 155 (4): 1779-1790. doi:10.1104/pp.110.171595.
  6. 6. Euro. J. Cell Biol. 2011. 90 (1-2): 128-135. doi:10.1016/j.ejcb.2010.09.004.
  7. 7. Mol. Cell. Proteomics. 2012. 11 (11): 1510-1522. doi:10.1074/mcp.M112.017251.
  8. 8. Proc. Natl. Acad. Sci. U.S.A. 2012. 109 (28): 11133-11138. doi:10.1073/pnas.1208669109.
  9. 9. J. Proteome Res. 2012. 11 (3): 1633-1643. doi:10.1021/pr2008384.
  10. 10. J. Lipid Res. 2012. 53 (9): 1864-1876. doi:10.1194/jlr.M026567.
  11. 11. Cell. 2012. 149 (1): 214-231. doi:10.1016/j.cell.2012.02.013.
  12. 12. Cell.2012. 150 (3): 620-632.doi:10.1016/j.cell.2012.06.027.
  13. 13. Exp. Hematol. 2012. 40 (4): 342-355. doi:10.1016/j.exphem.2011.12.005.
  14. 14. PLoS ONE. 2012. 7 (12): e50545. doi:10.1371/journal.pone.0050545.
  15. 15. PLoS Genet. 2012. 8 (9): e1002948. doi:10.1371/journal.pgen.1002948.
  16. 16. Euro. J. Cell Biol. 2012. 91 (11-12): 950-960. doi:10.1016/j.ejcb.2012.07.001.
  17. 17. J. Proteomics.2013. 79: 60-71. doi:10.1016/j.jprot.2012.12.001.
  18. 18. Biochem. Biophys. Res. Commun. 2013. 435 (3): 403-407. doi:10.1016/j.bbrc.2013.04.101.
  19. 19. J. Biol. Chem. 2013. 288 (36): 26209-26219. doi:10.1074/jbc.M113.483396.
  20. 20. J. Biol. Chem. 2013. 288 (40): 29036-29045. doi:10.1074/jbc.M113.486753.
  21. 21. Mol. Microbiol. 2013. 89 (4): 660-675. doi:10.1111/mmi.12303.
  22. 22. Proc. Natl. Acad. Sci. U.S.A. 2013. 110 (9): 3339-3344. doi:10.1073/pnas.1217632110.
  23. 23. Mol. Cell. 2013. 51 (2): 265-272. doi:10.1016/j.molcel.2013.06.003.
  24. 24. Mol. Cell. Biol. 2013. 33 (8): 1487-1502. doi:10.1128/MCB.00971-12.
  25. 25. PLoS ONE. 2013. 8 (6): e64953. doi:10.1371/journal.pone.0064953.
  26. 26. Nature Methods. 2013. 10 (7): 634-637. doi:10.1038/NMETH.2518.
  27. 27. Diabetes. 2013. 62(10): 3404–3417. doi:10.2337/db12-1650.
  28. 28. PLoS ONE. 2013. 8(7): e67513. doi:10.1371/journal.pone.0067513.
  29. 29. J. Clin. Invest. 2014. 124 (2):768-784. doi:10.1172/JCI69413.
  30. 30. PLoS ONE. 2014. 9(2): e89283. doi:10.1371/journal.pone.0089283.
  31. 31. Mol. Syst. Biol2014. 10(11): 762. doi:10.15252/msb.20145227.
  32. 32. PLoS ONE. 2014. 9(3): e91039. doi:10.1371/journal.pone.0091039. 
  33. 33. Mol. Biosyst., 2015. 11 (3): 908-922 doi:10.1039/c4mb00490f.
  34. 34. Methods in Molecular Biology, 2015. 1295: 275-292. doi:10.1007/978-1-4939-2550-6 21.
  35. 35. PloS one. 2015. 10 (10): e0140619.doi:10.1371/journal.pone.0140619.
  36. 36. J. Proteomics. 2015. 128: 352-364. doi:10.1016/j.jprot.2015.08.015.
  37. 37. Plant Mitochondira: Methods and Protocols. 2015.107-121. doi:10.1007/978-1-4939-2639-8_7.
  38. 38. J Virol2016 Feb 3. pii: JVI.03175-15. doi:10.1128/JVI.03175-15.
  39. 39. PLoS ONE. 2015. 10(5): e0126242.doi:10.1371/journal.pone.0126242.
  40. 40. Nat Commun. 2015. 6: 7726. doi:10.1038/ncomms8726.
  41. 41. Nat Biotechnol. 2015. 33(4): 415-423. doi:10.1038/nbt.3130.
  42. 42. EMBO Rep. 2016. 17(3): 455-469. doi:10.15252/embr.201541132.
  43. 43. Arch. Biochem. Biophys. 2016. 598: 1-10. doi:10.1016/j.abb.2016.03.025.
  44. 44. Cancers. 2016. 8(3): 37. doi:10.3390/cancers8030037.
  45. 45. mSystems. 2016. 1(3): e00005-16. doi:10.1128/mSystems.00005-16.
  46. 46. J Biol Chem. 2016. 291(11): 5484-5499. doi:10.1074/jbc.M115.707091.
  47. 47. Sci Rep. 2016. 6: 19722. doi:10.1038/srep19722.
  48. 48. JCI Insight. 2016. 2(1): e84897doi:10.1172/jci.insight.84897.
  49. 49. Archives of Biochemistry and Biophysics. 1-10. 2016. 598.
  50. 50. Molecular & Cellular Proteomics. 2016. doi:10.1074/mcp.O116.065219
  51. 51. American Society for Microbiology. 2016. 1(3): 1-19.  doi: 10.1128/mSystems.00005-16.
  52. 52. Cancers. 2016. 8(3): 1-13. doi: 10.3390/cancers8030037.
  53. 53. JCI Insight. 2016. 1(2): 1-14. doi: 10.1172/jci.insight.84897.
  54. 54. Universitat zu Koln. 2016. 1-169.
  55. 55. EMBO Press. 2016. 17(3): 455-469. doi: 10.15252/embr.201541132.
  56. 56. Nature Biotechnology. 2016. 34(11): 1198-1205. doi: 10.1038/nbt.3681.
  57. 57. Journal of Visualized Experiments. 2016. 108. doi: 10.3791/53563.
  58. 58. BioRxiv. 2016. doi: https://doi.org/10.1101/057174.
  59. 59. Journal of The American Society for Mass Spectrometry. 2016. 27 (11) 1758-1771. doi: 10.1007/s13361-016-1476-zg.
  60. 60. The Journal of Biological Chemistry. 2016. 291 (11) 5484-5499 doi: 10.1074/jbc.M115.707091.
  61. 61. Molecular & Cellular Proteomics. 2016. 15 (2) 493-505. doi: 10.1074/mcp.M115.049288.
  62. 62. PLoS ONE. 2017. 12(6): e0178603. doi:10.1371/journal.pone.0178603
  63. 63. J. of Molecular Medicine. 2018. 1-19 online doi: 10.1007/s00109-017-1616-3
  64. 64. PNAS. 2018. 115 (1): 210-215. doi: 10.1073/pnas.1717519115
  65. 65. Methods Mol Biol. 2017;1653:65-81. doi: 10.100225-8_57/978-1-4939-7. 
  66. 66. Methods Mol Biol. 2015;1305:107-21. doi: 1007/978-1-4939-26398_7
  67. 67. Mitochondrion. 2014 Nov;19 Pt B:252-60. doi: 10.1016/j.mito.2014.03.004
  68. 68. Front. Cell. Infect. Microbiol. 2018. doi: 10.3389/fcimb.2017.00537

  69. 69. Nature Cell Biology. 2019. 21: 251-262. doi: 10.1038/s41556-018-0268-z.

  70. 70. Protein Acetylation. 2019. 1983: 57-77. doi:10.1007/978-1-4939-9434-2_5 

  71. 71. Molecular Metabolism. 2019. 25: 35-49. doi: 10.1016/j.molmet.2019.04.008 

  72. 72. The Plant Journal. 2019. 99(1): 176-194. doi:10.1111/tpj.14315

  73. 73. Molecular Cell. 2019. 74(6): 1250-1263. doi:10.1016/j.molcel.2019.04.009

  74. 74. Connective Tissue Research. 2019. doi:10.1080/03008207.2019.1648443 

  75. 75. Cell Reports. 2019. 29(3). doi:10.1016/j.celrep.2019.09.023

  76. 76. Journal of Molecular Cell Biology. 2019. doi:10.1093/jmcb/mjz099

  77. 77. Nature Cell Biology. 2019. 21: 1248-1260. doi:10.1038/s41556-019-0397-z

  78. 78. J. of Proteome Research. 2020. 19: 962-972. doi:10.1021/acs.jproteome.9b00853

  79. 79. Scientific Reports, 2020 10(1), 2464. doi:10.1038/s41598-020-59244-4

  80. 80.Mol. Systems Biol., 2020, 16(7), e9464. doi:10.15252/msb.20209464

  81. 81. Journal of Mol. Cell Biol., 2020, 12(6), 424–437. doi:10.1093/jmcb/mjz099

  82. 82. Mol. & Cell. Proteomics, 2020, 19(8), 1303- 1309. doi:10.1074/mcp.RA119.001897

  83. 83. Viruses, 2020, 12(9), 976. doi: 10.3390/v12090976

  84. 84. Science Advances. 2021. 7(3). doi: 10.1126/sciadv.abc4897

  85. 85. Nature Microbiology. 2021. 6(3): 366-379. doi: 10.1038/s41564-020-00843-2

  86. 86. JCI Insight. 2021. 6(3). doi: 10.1172/jci.insight.144301

  87. 87. Connective Tissue Research. 2021. 61(6), 586-593. doi: 10.1080/03008207.2019.1648443

  88. 88. Circulation Research. 2021. 128(11), 1629-1641. doi: 10.1161/CIRCRESAHA.120.317046